

Disclosures

None

2

Discussion

Please ask questions at any time
There will also be a Q&A session at the end of the presentation

Learning Objectives

- Identify physeal fractures in pediatric and adolescent patients
- Review appropriate fracture management for physeal injuries

4

Overview

- Long Bone Anatomy
- Physeal Anatomy
- · Salter-Harris Physeal Fracture Classification
- Treatment of Physeal Injuries
- When to Refer a Physeal Injury
- Surgical vs. Non-surgical treatment
- Consequences of Missed or Maltreated Physeal Injuries


5

Long Bone Anatomy

- So we are all on the same page

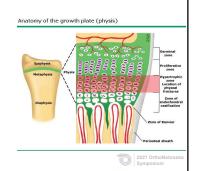
 - Diaphysis
 Shaft of the long bone
 - Metaphysis
 - Transition between diaphysis and epiphysis
 - Narrowing of the cortical bone with increased trabecular bone

 - Epiphysis
 End of the long bone associated with joint
 Thin cortex with significant amount of trabecular bone

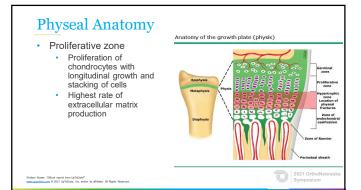
Questions

7

Physeal Anatomy


- · The physis a complex structure with multiple layers visible on microscopy
- The layers of the physis correspond to their function
- Physeal injuries typically occur through one layer of the physis
- This only applies to long bone formation

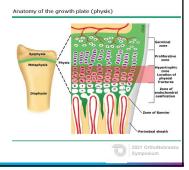
8


Physeal Anatomy

- The layers of the physis are as follows
 - · Reserve/Germinal zone
 - Proliferative zone
 - Hypertrophic zone Physeal fractures through here
 - Primary spongiosa
 - Secondary spongiosa

Physeal Anatomy Reserve/Germinal zone Storage site for later growth and matrix formation Glucose Glycogen Proteoglycan Anatomy of the growth plate (physis)

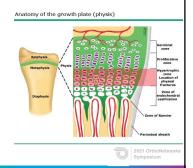
10



11

Physeal Anatomy • Hypertrophic zone • Zone of chondrocyte maturation • Maturation Zone • Caldification preparation happens here • Degenerative Zone • Chondrocytes grow in size up to 5x • Provisional calcification zone • Chondrocytes die and matrix calcifies • Chondrocytes die and matrix calcifies

Physeal Anatomy


- Primary spongiosaVessels invade the area
 - Osteoblasts align on cartilage bars to expand the physis
 - This area will mineralize to form woven bone and remodel to become secondary spongiosa

13

Physeal Anatomy

- Secondary spongiosa
 - Internal remodeling
 - Replacement of fiber bone with lamellar bone
 - External remodeling
 - Funnelization

14

Questions

Salter-Harris Physeal Fracture Classification

- Growth plate fractures are classified by severity 1-5
- The severity of the injury increases as you go up the scale
- The chance of physeal arrest increases as you go up the scale
- Type 2 is by far the most common fracture type

16

Salter-Harris Physeal Fracture Classification

- Salter-Harris 1 fracture
 - Compression or separation of the physis
 - This injury can be displaced or non-displaced
 - Pain is common over the physis even if no fracture is visualized
 - MRI may be the only way to diagnose this
 - injury

 Not recommended initially as most patients will be better after 4-6 weeks of immobilization
 - Displaced SH1 fractures may require a

Type 1 - 5%

17

Salter-Harris Physeal Fracture Classification

- · Salter-Harris 2 fracture
 - Fracture through the physis and exiting the metaphysis
 - By far the most common
 - Thurston-Holland fragment
 - The metaphyseal bone attached to the epiphysis portion of the fracture

Salter-Harris Physeal Fracture Classification

- · Salter-Harris 2 fracture
 - Thurston-Holland fragment
 - The metaphyseal bone attached to the epiphysis portion of the fracture
 - Not to be confused with this guy..

19

Salter-Harris Physeal Fracture Classification

- Salter-Harris 3 fracture
 - Fracture traverses the physis and exits the epiphysis
 - Uncommon fracture type
 - When seen commonly requires surgical intervention due to instability of the joint

Type 3 - 10%

20

Salter-Harris Physeal Fracture Classification

- · Salter-Harris 4 fracture
 - · Fracture passes through the
 - Epiphysis
 - Physis Metaphysis
 - Usually requires higher energy
 - If displaced will require intervention

Salter-Harris Physeal Fracture Classification

- · Salter-Harris 5 fracture
 - · Crush injury to the physis
 - These fractures are uncommone
 - When they occur, it is common to see physeal arrest

Type 5 - uncommon

22

Questions

23

Treatment of Physeal Injuries

- Treatment of the physeal injury depends upon the severity of the injury and the displacement of the fracture
- The injury on the right requires reduction and immobilization with possible surgery
- The injury on the left requires a well molded

Treatment of Physeal Injuries

- · Initial immobilization is recommended
- If a physeal injury is to be reduced, it should not be attempted multiple times as this will increase the chances of growth arrest
- If you are not comfortable reducing the physeal injury, please refer on for treatment as soon as possible

25

Treatment of Physeal Injuries

- Radiographic follow up is generally indicated
 - Follow up is continued until a normal growth rate can be established radiographically
 - This may require years of radiographic follow up depending upon the age of the child and severity of the injury
 - Currently further research is being dedicated to the radiographic and clinical factors that wound indicate lower need for radiographic follow up

26

Questions

Consequences of Missed or Maltreated Physeal

Injuries

- Physeal arrest
 - Physeal injury may cause growth arrest at all or part of the physis
- Complete physeal arrest
 - Leads to complete arrest at the injured physis
 - No further growth occurs
 - May lead to leg/arm length discrepancy

28

Consequences of Missed or Maltreated Physeal Injuries

- Physeal arrest
 - Physeal injury may cause growth arrest at all or part of the physis
- Incomplete physeal arrest
 - Further growth occurs at a portion of the physis
 - May lead to angulated growth at the physis
 - May lead to angular deformity of the limb in question

2021 OrthoNebras Symposium

29

Consequences of Missed or Maltreated Physeal Injuries Physeal arrest Such injury may require excision of the bone which has grown across the physis Physeal bar excision Guided growth with orthopedic surgeon may be utilized to improve the bone length or angulation Malalgned Femur In a Child Alignment Corrected with Guided Growth Guided Growth To bone growth Alignment Corrected with Guided Growth To bone growth To bone

Clinical Pearls	2021 OrthoNebraska Symposium	
31	Symposium	
]
Questions		
	2021 OrthoNebraska Symposium	