Rehabilitation Protocols: Root vs Peripheral Meniscal Repair

Karri Iten, PT, DPT **Board Certified Specialist in Orthopaedics (OCS)** July 28, 2023

Ortho raska

SYMPOSIUM

Disclosures

No Disclosures

Learning Objectives

- Discuss considerations for developing rehabilitation guidelines for meniscal repairs

• Develop appropriate rehabilitation protocols for peripheral and root meniscal repairs

Why Do We Care?

Meniscus tears are the most common cause of orthopedic surgeries

- 60 per 100,000 people
- 850,000 patients per year

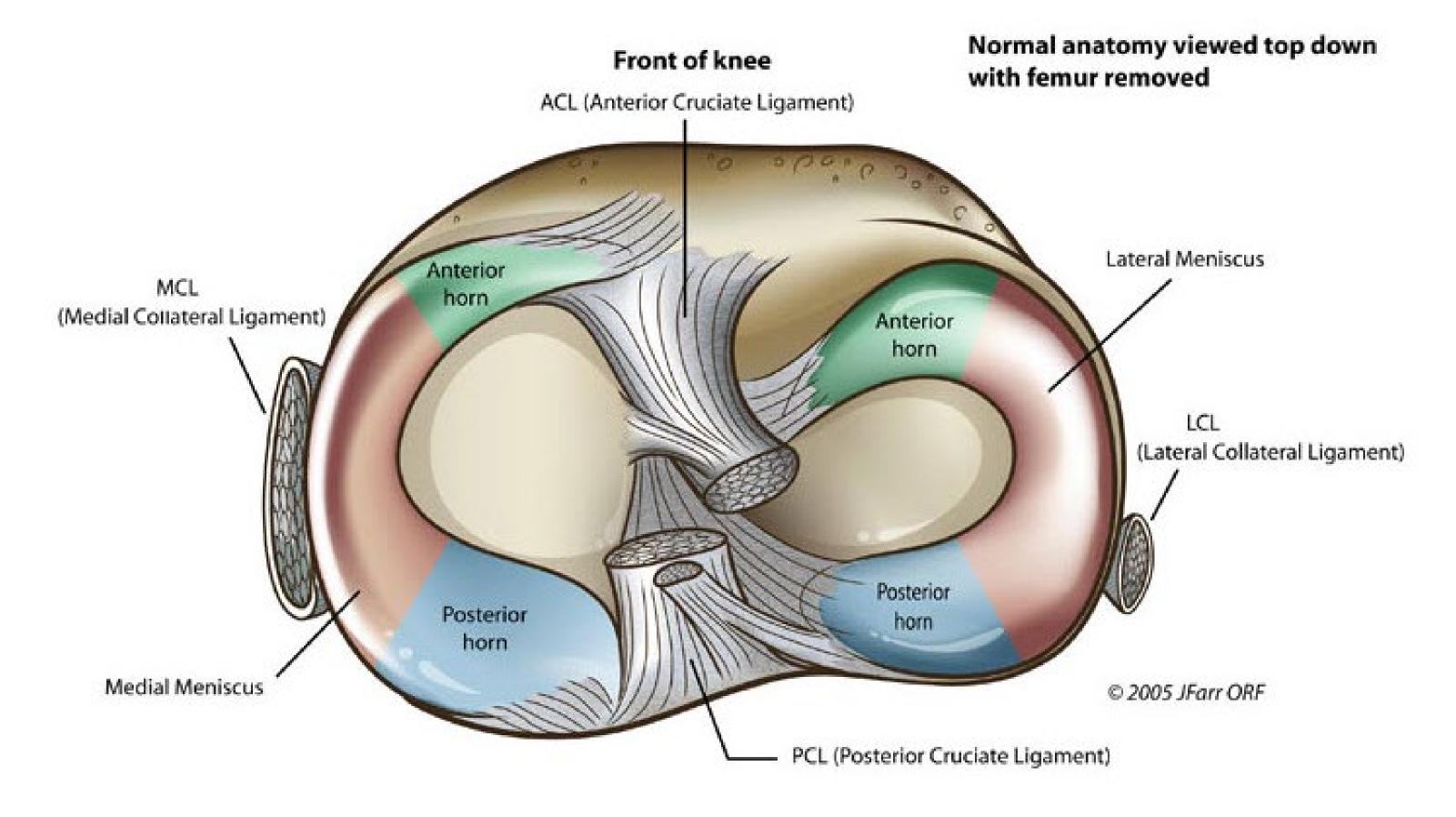
Repair rates are increasing

- More active population
- Meniscectomies & non-operative management lead to increased knee instability & earlier OA

Significant variety in post-op protocols:

- Limited Weightbearing
- Limited ROM
- Dual restriction
- Accelerated

Brown 2023 Logerstedt 2018 Luvsannyam 2022 Neogi 2013 O'Donnell 2017

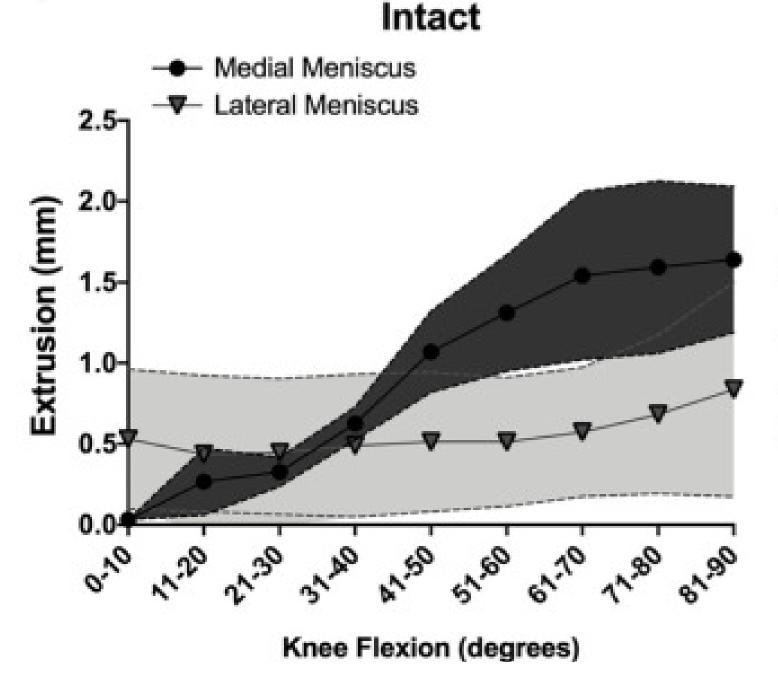

The Meniscus: A Quick Review

Anatomy

Function

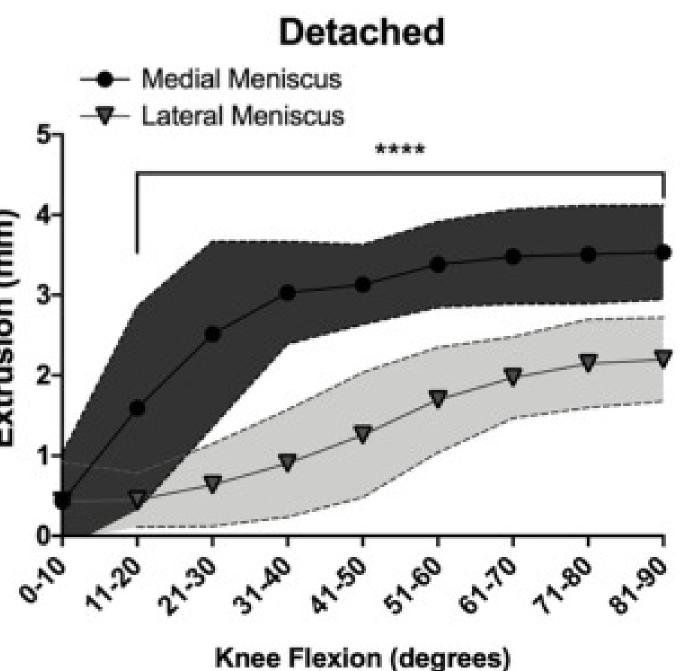
- Load distribution
- Shock-absorption
- Stabilization
- Lubrication

Types of Tears


5

Medial vs Lateral Meniscus

MEDIAL MENISCUS


- More common in 4th-5th decade
- Degenerative ullet
- Higher likelihood meniscal extrusion \bullet
- 3x more common ullet

Gee 2020 VanderHave 2015 Walczak 2021

LATERAL MENISCUS

- More common in younger, athletes
- Traumatic (81% comorbid ACL tear)
- Less prone to biomechanical changes

Current Controversies: ROM & WBing Limitations

Manuscript	No of patients	WB limitations	ROM limitations	Failure rate and follow-up	Level of evidence
Choi et al. [28]	14	Toe-touch WB for 6 weeks, followed by a gradual increase of weight- bearing over the following 4 weeks	ROM exercises were allowed from 0° to 90° of flexion for 6 weeks	Failure rate 7% Follow-up 36 months	Case series: Level of evidence 4
Haklar et al. [29]	5	No WB 6–8 weeks	ROM 0°-120°	Failure rate 0% Follow-up 31 months	Non-randomised cohort: Level of evidence 3
Kocabey et al. [27]	52	Immediate WB as toler- ated	ROM 0°-125°	Failure rate 4% Follow up 10 months	Retrospective case series: Level of evidence 4
Lind et al. [21]	60 (32 accelerated protocol, 28 restricted protocol)	Accelerated protocol: 2 weeks toe-touch WB Restricted protocol: 6 weeks toe-touch WB	Accelerated protocol: ROM 0° – 90°, without brace, then return to normal activities Restricted protocol: 6 weeks with locked brace, gradual increase ROM to 90°	Failure rate 28% (accel- erated) 36% (restricted) Follow-up 24 months	Randomised controlled clinical trial: Level of evidence 1
Logan et al. [31]	42	Protected WB for 6 weeks	ROM 0°-120° for 6 weeks	Failure rate 24% Follow-up 102 months	Case series: Level of evidence 4
Mariani et al. [11]	22	Immediate WB as toler- ated	Immobilisation with brace locked in full extension for 1 month, passive ROM 0° – 90° for 2 weeks, than gradual increase	Failure rate 9% Follow-up 28 months	Non-randomised cohort study: Level of evidence 3
Noyes et al. [30]	29	Partial WB for 4 or 6 weeks	ROM 0°- 135° for 6 weeks	Failure rate 25% Follow-up 51 months	Non-randomised cohort study: Level of evidence 3

Calanna 2022

7

WB Weightbearing, ROM Range of motion

ns protocols described in literature

Current Controversies: Weightbearing Limitations

- Axial loading *compresses* bucket handle & vertical longitudinal tears, but *distracts* radial tears
- Vertical: No differences in failure rates with early weightbearing May improve compliance & patient comfort
- Root: Studies more limited
 Nearly all suggest NWB status for a defined period (4-6 weeks)
 ALL fixation types are 3-5x weaker than intact root

Lind 2013 Perkins 2018 VanderHave 2015 Forkel 2017 O'Donnell 2017 Banovetz 2022 LaPrade 2015

Current Controversies: Recommendations

Create an individualized program based on:

- Type
- Location
- Extent
- Tissue quality

If in doubt, lean towards a more conservative approach

Calanna 2022 Dean 2020 Mueller 2016

Use combination of time & criteria to determine safe progression

Peripheral Meniscal Repairs PROTECTION PHASE (Week 0-4)

<u>GOALS:</u> Regain quad control, restore ROM, limit edema & pain

PRECAUTIONS:

- 1. ROM:
 - Extension: full extension immediately
 - Flexion: no forced flexion >90 degrees x 4wks
- 2. Weight bearing:
 - \circ Day 0 to 3 = 25% with B crutches
 - \circ Day 3 to 2 Wks = progress to WBAT with B crutches
 - After 2 Wks = FWB no AD
- 3. No isolated hamstring strength x 8 wks

CRITERIA TO D/C CRUTCHES:

- 1. ROM:
 - Full active knee extension
 - No pain on passive overpressure
- 2. Strength:
 - Strong quad isometric with full tetany & superior patellar glide
 - 2x10 SLR without quad lag

Peripheral Meniscal Repairs PROTECTION PHASE (Week 0-4)

SUGGESTED INTERVENTIONS:

- Extension ROM: hangs, quad sets
- Flexion ROM: heel & wall slides, stationary bike
- O Quad strength/activation:
 - 4 way SLR
 - Multi angle isometrics (90, 60 deg)
 - TKEs
 - SAQs, LAQs
- ✓ NMES: Russian Stim 10-20:50 reach 50% MVIC

@ 0d, 60d, 90d flexion

✓ BFR: 20-40% 1RM (max 1# increase per week)
 30x, 15x, 15x, 15x with 45-60sec rest

 \circ Ambulation:

- Gait training
- Weight shift
- Mini squat
- \circ Calf, glutes, lumbopelvic stability
- \circ Balance training
- Patellar mobilizations all directions

Peripheral Meniscal Repairs EARLY LOADING PHASE (Week 4-8)

GOALS: Regain full ROM & quad activation, reduce effusion & pain, protect healing tissues

PRECAUTIONS: NO isolated hamstring x 8 wks

<u>ROM</u>: Progress flexion

If lacking full extension immediately contact surgeon

CRITERIA TO PROGRESS TO NEXT PHASE:

- 1. ROM: Full painfree AROM
- 2. Strength: demonstrate proper LE mechanics with all exercises (Bilaterally)
- 3. Weightbearing: Full without pain
- 4. Effusion: no reactive effusion with activity

SUGGESTED INTERVENTIONS:

- Progress WB exercises
 - \circ Squats
 - \circ Heel taps
 - \circ Step ups
- Progress calf, glutes, lumbopelvic stability
- \circ Progress SL balance

✓ Continue BFR & NMES as appropriate

Peripheral Meniscal Repairs CONTROLLED STRENGTH & POWER PHASE (Week 8-12)

<u>GOALS</u>: Build strength and power for functional movements

<u>ROM:</u> Monitor & progress as needed

Contact surgical team with any concerns

CRITERIA TO INITIATE RUNNING AND JUMPING:

- 1. 12 wks s/p and surgeon approval
- 2. Full, symmetrical ROM
- 3. Strength: FAST >70%
- 4. No reactive effusion
- 5. Normal WB, gait, and jogging mechanics
- 6. Pain free hopping in place (DL/SL)

CRITERIA TO PROGRESS TO NEXT PHASE:

Able to tolerate all above criteria

Full return to run/hop without pain or effusion

SUGGESTED INTERVENTIONS:

- \circ Max effort multi angle isometrics
- \odot Isolated hamstring strengthening
 - SL/DL RDL
 - Ball HS curl
 - Hamstring curl machine
- Progress accessory muscle work
- \circ Progress balance
- \odot Continue BFR & NMES as needed
- At 10 wks: Begin PWB plyometrics (shuttle hop)
 - If no reactive effusion, full ROM, good strength/control on SL squat & heel tap

Peripheral Meniscal Repairs RETURN TO FUNCTION PHASE (Week 12+)

<u>GOALS:</u> Protect healing tissues; regain strength, power, & dynamic ability to prepare for return to functional activity

SUGGESTED INTERVENTIONS:

- Continue ROM/strengthening PRN
- Muscle power generation & plyometrics
- Agility (as strength and control allow)
 - Side shuffling
 - Carioca
 - Figure 8
 - Zig-zags
 - Resisted jogging (Sports Cord) in straight planes
 - Backpedaling

CRITERIA TO RETURN TO SPORTS:

- 1. ROM: full, pain free & symmetrical
- Strength: Isokinetic testing >=90% hamstring & quad at 60^o/sec and 300^o/sec
- Effusion: No reactive effusion ≥ 1+ with sportspecific activity
- 4. Weight Bearing: normalized gait and jogging mechanics
- Neuromuscular control: appropriate mechanics & force attenuation strategies with high level agility, plyometrics, and high impact movements
- 6. Functional Hop Testing: LSI >=90% for all tests
- 7. Physician Clearance

MAXIMUM PROTECTION PHASE (Week 0-4)

GOALS: Protect repair, improve quad activation, limit edema & pain

PRECAUTIONS:

- 1. ROM:
 - Extension: full extension immediately after surgery
 - Immediate referral if lacking full extension by 4 wks
 - Flexion: gradually increase to 90d PROM
 - No forced flexion
- 2. Weight bearing:
 - \odot TTWB x 4 wks with brace locked in extension
- 3. No isolated hamstring strength x 10 wks

CRITERIA TO D/C NMES:

<20% deficit on isometric testing

CRITERIA TO PROGRESS TO NEXT PHASE:

- 1. ROM: minimum 0-0-90d
- 2. Strength:

Full tetanic quad contraction with superior patellar translation

- \odot 2x10 SLR with no extensor lag
- \circ Able to hold SLR >10sec without lag

MAXIMUM PROTECTION PHASE (Week 0-4)

SUGGESTED INTERVENTIONS:

- Extension ROM: hangs, quad sets
- $\,\circ\,$ Flexion ROM: assisted heel & wall slides
 - Avoid active knee flexion
- $\,\circ\,$ Patellar mobilizations all directions
- Glute strengthening
- Lumbopelvic stability

Quad strength/activation:

- 4 way SLR
- Multi angle isometrics (90^o, 60^o)
- Prone TKE
- Knee ext 0-60^o

✓ NMES: Russian Stim 10-20:50

attempting to reach 50% MVIC

@ 0º, 60º, 90º flexion

✓ BFR: 20-40% 1RM (max 1# increase per wk)
 30x, 15x, 15x, 15x with 45-60sec rest

Moderate Protection Phase (Week 4-8)

<u>GOALS:</u> Regain full PROM, improve quad control, restore gait mechanics, protection of repair, limit edema & pain

PRECAUTIONS:

- 1. NO isolated hamstrings
- NO twisting, pivoting, running, or deep squatting >90 degrees
- ROM: Gentle progression of flexion PROM
 If lacking full extension immediately contact surgeon
- 4. Weight bearing
 - Progressive WB 4-8wks
 - May unlock brace if there is good quad control.
 - Goal is full WB without brace at 8 wks

CRITERIA TO D/C CRUTCHES & BRACE:

- 1. ROM: Full active knee extension; no pain with overpressure
- 2. Strength: Full quad tetany with superior patellar glide; 2x10 SLR without quad lag
- 3. Weight Bearing: Painfree & no gait deviations
- Effusion: <1+ preferred (2+ acceptable if all other criteria met)

Moderate Protection Phase (Week 4-8)

SUGGESTED INTERVENTIONS:

- Gait training
- Weight shifts
- OKC quad strengthening
- Progress WB exercises:
 - Squat 0-60d
 - Heel tap
 - Step up/down
 - Leg press 0-70d
 - Hip abd/add
- Progress calf, glutes, lumbopelvic stability
- Progress balance
- ✓ Continue BFR & NMES as appropriate

CRITERIA TO PROGRESS TO NEXT PHASE:

- 1. Full, pain free PROM
- 2. Full WB without pain
- 3. No reactive effusion with exercises or activity
- A. Neuromuscular control: demonstration of proper LE mechanics with all exercises (bilaterally)

Meniscal Root Repairs EARLY LOADING PHASE (Week 8-12)

<u>GOALS:</u> Normalize gait without AD/brace; regain full AROM; build strength & power for function

PRECAUTIONS:

- 1. NO isolated hamstring strengthening until 10 weeks
- 2. NO twisting, pivoting, running and deep squatting >90d
- 3. ROM: full AROM by week 10
 - Contact surgical team with any concerns

CRITERIA TO INITIATE RUNNING AND JUMPING:

- 16 wks s/p and surgeon approval
- Full, symmetrical ROM 2.
- Strength: FAST >70% 3.
- No reactive effusion
- Normal WB, gait, and jogging mechanics 5.
- Pain free hopping in place (DL/SL) 6.

CRITERIA TO PROGRESS TO NEXT PHASE:

Able to tolerate all above criteria and full return to run/hop without pain or effusion

Meniscal Root Repairs EARLY LOADING PHASE (Week 8-12)

GOALS: Normalize gait without AD/brace; regain full AROM; build strength & power for function

SUGGESTED INTERVENTIONS:

- Full OKC resisted extension
- Multi angle isometrics with max effort
- Week 10 : Isolated hamstring strengthening
 - SL/DL RDL
 - Ball HS curl
 - Hamstring curl machine
- $\,\circ\,$ Isolated calf strengthening
- Progress accessory muscle work
- Progress balance
- ✓ BFR and NMES as needed
- Initiate jogging per MD auth

Meniscal Root Repairs RETURN TO FUNCTION PHASE (Week 12+)

<u>GOALS:</u> Protect healing tissue; regain strength, power & dynamic ability for functional movements

PRECAUTIONS:

- 1. Deep squatting permitted at 5 ½ months
- 2. Initiate pivoting and cutting: 5-6 months
- 3. Initiate agility training: 5-6 months

RETURN TO FULL SPORT PARTICIPATION:

- 1. 5-6 months
- 2. >90% FAST
- 3. Surgeon clearance

SUGGESTED INTERVENTIONS:

- Quadriceps, hamstring, glute, calf, and trunk
 dynamic stability
- Muscle power generation and plyometrics
- Begin agility:
 - Side shuffling
 - Carioca
 - Figure 8
 - Zig-zags
 - Resisted jogging (Sports Cord) in straight planes
 - Backpedaling

Thank You

SCOPE PROTOCOL TEAM Dominic Ilardi Ashley Conlin Mike Lovgren Wendi Sanny

Karri.Iten@OrthoNebraska.com

Questions?

Citations

Banovetz MT, Roethke LC, Rodriguez AN, LaPrade RF. Meniscal Root Tears: A Decade of Research on their Relevant Anatomy, Biomechanics, Diagnosis, and Treatment. Archives of Bone & Joint Surgery. 2022;10(5):366-380.

Becker R, Wirz D, Wolf C, et al. Measurement of meniscofemoral contact pressure after repair of bucket-handle tears with biodegradable implants. Archives of Orthopaedic & Trauma Surgery. 2005;125(4):254-260.

Brown JR, Hollenbeck JFM, Fossum BW, et al. Direct measurement of three-dimensional forces at the medial meniscal root: A validation study. *Journal of Biomechanics*. 2023;148:N.PAG.

Calanna, F, Duthon, V, Menetrey, J. Rehabilitation and return to sports after isolated meniscal repairs: a new evidence-based protocol. *Journal of Experimental Orthopaedics*. 2022;9(1):1-8. doi:10.1186/s40634-022-00521-8

Dean, RS, DePhillipo, NN, Monson, JK, LaPrade RF. Peripheral Stabilization Suture to Address Meniscal Extrusion in a Revision Meniscal Root Repair: Surgical Technique and Rehabilitation Protocol. Arthroscopy Techniques. 2020;9(8):e1211-e1218. doi:10.1016/j.eats.2020.04.022

Forkel P, Foehr P, Meyer J, et al. Biomechanical and viscoelastic properties of different posterior meniscal root fixation techniques. *Knee Surgery, Sports Traumatology, Arthroscopy*. 2017;25(2):403-410. doi:10.1007/s00167-016-4237-4

Ganley T, Arnold C, McKernan D, Gregg J, Cooney T. The impact of loading on deformation about posteromedial meniscal tears. *Orthopedics*. 2000;23(6):597-601.

Gee SM, Tennent DJ, Cameron KL, Posner MA. The Burden of Meniscus Injury in Young and Physically Active Populations. *Clinics in Sports Medicine*. 2020;39(1):13-27.

LaPrade RF, LaPrade CM, Turnbull TL, Wijdicks CA, Ellman MB, Cerminara AJ. Cyclic Displacement After Meniscal Root Repair Fixation: A Human Biomechanical Evaluation. *American Journal of Sports Medicine*. 2015;43(4):892-898.

Citations

Lind M, Nielsen T, Faunø P, Lund B, Christiansen SE. Free Rehabilitation Is Safe After Isolated Meniscus Repair: A Prospective Randomized Trial Comparing Free with Restricted Rehabilitation Regimens. American Journal of Sports Medicine. 2013;41(12):2753-2758.

Logerstedt DS, Scalzitti DA, Bennell KL, et al. Knee Pain and Mobility Impairments: Meniscal and Articular Cartilage Lesions Revision 2018. Journal of Orthopaedic & Sports Physical Therapy. 2018;48(2):A1-A50

Luvsannyam E, Jain MS, Leitao AR, Maikawa N, Leitao AE. Meniscus Tear: Pathology, Incidence, and Management. Cureus. 2022;14(5):e25121. Published 2022 May 18.

Mueller BT, Moulton SG, O'BrienL, LaPrade RF. Rehabilitation Following Meniscal Root Repair: A Clinical Commentary. Journal of Orthopaedic & Sports *Physical Therapy*. 2016;46(2):104-113.

Neogi DS, Kumar A, Rijal L, Yadav CS, Jaiman A, Nag HL. Role of nonoperative treatment in managing degenerative tears of the medial meniscus posterior root. Journal of Orthopaedics & Traumatology. 2013;14(3):193-199.

O'Donnell K, Freedman KB, Tjoumakaris FP. Rehabilitation Protocols After Isolated Meniscal Repair: A Systematic Review. American Journal of Sports Medicine. 2017;45(7):1687-1697.

Perkins B, Gronbeck KR, Yue RA, Tompkins MA. Similar failure rate in immediate post-operative weight bearing versus protected weight bearing following meniscal repair on peripheral, vertical meniscal tears. Knee Surgery, Sports Traumatology, Arthroscopy. 2018;26(8):2245-2250.

VanderHave KL, Perkins C, Le M. Weightbearing Versus Nonweightbearing After Meniscus Repair. Sports Health: A Multidisciplinary Approach. 2015;7(5):399-402.

Walczak, BE, Miller, K, Behun, MA, et al. Quantifying the differential functional behavior between the medial and lateral meniscus after posterior meniscus root tears. PLoS ONE. 2021;16(11).

